
Optimized numerical solutions of SIRDVW multiage model for the1

vaccination roll-out during the third pandemic wave of SARS-CoV-2:2

the Italian case study. Supporting Information.3

S1. Parameters Setting for the Italian scenario4

In Section 3, the parameters involved in the model have been set as follows:5

• I = (0, Tf ], Tf = 151 (days): the epidemiological model is set in Italy on the period ranging from January6

1st, 2021 to June 1st, 2021 (i.e. the six-month period that starts with the beginning of the vaccination7

campaign and concurrent with the third pandemic wave).8

• β ∈ (0, 1): transmission rate, depending on the implemented Non-Pharmaceutical Interventions (NPIs)9

and virus transmissibility. It is assumed to be constant across all ages as in [1];10

• σV , σW ∈ (0, 1): vaccine effectiveness on transmissibility after administration of first dose (the former)11

or completing the cycle (the latter). It can be interpreted as the ratio of transmissibility between vacci-12

nated individuals and unvaccinated ones. The value 0 means that the vaccine is fully effective, 1 totally13

ineffective;14

• θV , θW ∈ (0, 1): vaccine effect on mortality after administration of first dose (the former) or completing15

the cycle (the latter). It can be interpreted as the ratio of probability of getting severe symptoms between16

vaccinated individuals and unvaccinated ones. The value 0 means that the vaccine is fully effective, 117

totally ineffective;18

• IFRi: age-dependant Infection Fatality Rate estimated starting from available data from Dipartimento19

di Protezione Civile Italiana as in [2];20

• In the fatality function fi(Si, Vi,Wi) the amount of days after the inoculation that we consider for reaching21

the complete vaccine effectiveness ta is fixed at 15 days;22

• Cik: i, k-th entry of the contact matrix, tracing back contacts between ages starting from the POLYMOD23

surveys [3] (see Figure ST1);24

• ri: susceptibilities to infection depending on age, drawn from [4], previously adopted by [1];25

• γ: recovery rate from the disease infection, which is maintained constant across ages. Since infectious26

individuals are supposed to exit from the correspondent compartment with flux γIi, the parameter γ is27

interpreted as the inverse of the average time of recovery tR. The distribution of recovery times is treated28

as a Gaussian distribution with mean t̄R = 14.20 (days) and variance σ2 = 5.94 (days2) as in [5]. We29

actually draw the posterior distribution of the parameter γ from the calibration stage (see S2 for more30

details);31

• Ni: Number of individuals in the i-th age stratification;32
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Figure ST1: Contact matrix retrieved by [3] for the specific age-classes contemplated in the model.

• µR: natural waning immunity rate, taking into account plausible reinfections coming from previously-33

recovered individuals. This parameter has not shown peculiar dependence on age and has been retrieved34

from [6, 7];35

• Iu,i(t) = (1 − δ(t))Ii(t) t ∈ I: approximate number of undetected individuals whose age falls in the i-th36

stratification at time t. As in [8], we compute the detection rate δ from the ratio of the computed Case37

Fatality Ratio (CFR) and the theoretical Infectious Fatality Ratio (IFR) for COVID19 independently38

on ages;39

• δw: elapsing time among subsequent administrations to be chosen in the admissible set {21, 28, 35, 42}40

days. In the Italian scenarios, it has been set at 21 days;41

• U1,i, U2,i, UR,i: daily amount of administered first doses, second doses and doses administered to the i-th42

age-class, respectively. The choice of these variables is coherent with actual implementation of the Italian43

vaccination campaign: two consecutive doses to be administered for completing the vaccination cycle44

to Susceptible individuals, one single administration to Recovered ones. To reduce the computational45

complexity of the model we assume that the functions U1,i(t), U2,i(t), UR,i(t) are piecewise constant46

(constant on each week) and the weekly value of administrations is supposed to be equally distributed47

among each day of the week. In Figure ST2 we present the history of the daily administrations in Italy48

during the period of interest, while in Figure ST3 the corresponding averages over the weeks are reported.49

Remark. During the Italian vaccination campaign, the mRNA-based vaccines Pfizer/BioNTech Comirnaty50

(BNT162b2) and SpikeVax (previously COVID-19 Moderna mRNA–1273) have been administered more ex-51

tensively. The values of the parameters σ and θ reported in Table SF1 have been deduced assuming to deal52

with a Pfizer/BioNTech kind of vaccine. The effectiveness of the vaccine on reducing both transmissibility and53

severity of symptoms has been previously assessed through medical trials (see e.g. [9]) and then posteriorly54

confirmed through the available epidemic data [10]. However, given the potential relevant impact of σ and θ55

on the optimality of the vaccination campaign, in S3 we carry out a sensitivity analysis of these parameters.56

2



Figure ST2: Amount of first doses, second doses and doses
administered to recovered during the time frame of interest
retrieved from DPC data [11].

Figure ST3: Amount of first doses, second doses and doses
administered to recovered during the time frame of interest
retrieved from DPC data [11], and then averaged per weeks.

Parameter (0,19) (20,39) (40,59) (60,79) (80+) Reference
γ 0.07 [5]
ri 0.33 1 1 1 1.47 [4]

IFRi 1e-4 6e-4 4.5e-3 2.3e-2 7.2e-2 [2]
µR 0.006 [6, 7]
σV 0.21 [1]
σW 0.21 [1]
θV 0.20 [1]
θW 0.037 [1]

Table SF1: Table of the parameters adopted during the calibration stage.

The differential model has been endowed with proper initial conditions for each of the considered age-state57

compartment. The amount of initial deceased is deterministically fixed and it is retrieved by available data in58

[12]. On the other hand, we introduce uncertainty on the initial conditions for the Susceptible, Infectious and59

Recovered classes. This choice is dictated by a different level of accuracy of the available data for the different60

compartments. Finally, vaccinated individuals belonging to V and W compartments have been set to zero since61

our period of interest ranges from January 1st, 2021 to June 1st, 2021 (i.e. the six-month period coinciding with62

the beginning of the vaccination campaign and therefore with the third pandemic wave). Hence, we assume63

Ii(0) = ζI,iID,i,0

Ri(0) = ζR,iRD,i,0

Si(0) = (Ni − (Ii(0) +Ri(0) +Di(0))) ζS,i

(1)

where XD,i is the value of the X-th compartment retrieved from the Italian DPC data on January 1st, 202164

and ζX,i are independent and identical uniform distributions in [0.7, 1.3]. The choice in (1) allows to introduce65

prior uncertainty to be posteriorly reconstructed after the Monte Carlo Markov Chain stage of the calibration66

process (see S2).67
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S2. Calibration process68

Following [8], we undergo a double-stage calibration for the transmission rate β. The transmission rate69

embodies the effects of non-pharmaceutical interventions due to the Italian government’s political decisions,70

updated on a weekly basis during the period of concern. Hence, the parameter is assumed to be piecewise-71

constant over one-week-long intervals (time-phases in the sequel). Similarly, e.g., to [1]), we assume that72

the transmission rate is independent of the age. In view of the above assumptions, we need to calibrate73

21 parameters representing the values of the transmission rate β in each time-phase. Generally speaking,74

calibration problems can be interpreted as deterministic inverse optimal control problems [13, 14, 15, 16], or75

can be tackled through stochastic techniques [17, 18, 19]. Alternatively, calibration problems can be solved76

by resorting to Machine-Learning based schemes ( see e.g. [20, 21] and [22, 21, 23, 24]). In this paper the77

calibration step is implemented by employing a classical two-stage process: (1) a Least Square (LS) phase is78

used for retrieving acceptable estimators of the parameters; (2) every output of the LS phase is then adopted79

as mean value for the corresponding prior distribution imposed during the classical Monte Carlo Markov Chain80

(MCMC) approach (we refer to [25] for more details). For what concerns the calibration of the initial conditions81

(1), we impose uniform priors on the initial values of S, I,R variables, while a Gaussian prior is employed for82

the calibration of the recovery time variable tR = 1
γ . During both LS and MCMC stages of the calibration,83

we minimize the adherence, for each age class i, of the deceased compartment Di to the public available data84

DD,i:85

E =

Nages∑
i=0

∫ Tf

0

(Di(t)−DD,i(t))
2 dt. (2)

In Figure ST5 the results of the calibration are shown. In particular, Figure ST5(a) represents the total86

amount of deceased during the first six months of 2021 (dashed line) and the behavior of the median value87

after the MCMC calibration, together with the credible interval of order 95% (shaded area). In Figure ST5(b)88

we present the age repartition of deceased among age-classes. More precisely, the orange curve stands for the89

amount of deceased after the LS-calibration, the red one for the median of the posterior, the black dashed90

line represents the DPC data of deceased, while the shaded areas represents the 95% credible intervals for91

each age-class. Notice that, as the cumulative number of recorded deceased cannot decrease, the decreasing92

behaviour in Figure ST5(b) of the dashed line is probably due to reporting errors. The median trend of the93

total amount of deceased is in agreement with the actual trend of the detected deaths recorded by the DPC;94

the same variable lies in the 95% credible interval posteriorly recovered, as showed in Figure ST5(b). Moreover,95

notice that the percentage repartition of deaths attained by the model with the calibrated transmission rate96

agrees qualitatively with the age-repartition of deceased actually observed in Italy during the same period (see97

Figure ST5(c)). To further assess the reliability of the output of the calibration process, the calibrated model98

has also been validated by comparing the simulated amount of infected individuals with the corresponding data99

value. In particular, in Figure ST6 the simulated detected infected individuals, computed as Id,i(t) = δIi(t),100

δ being the detection rate, are compared with the actual positive individuals recorded by [12]. As the the101
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number of infected individuals are not included in (2), the results of Figure ST6 show that the performance of102

the implemented model with the calibrated parameter can be considered fully satisfactory. In this respect, we103

also note that Figure ST6(b) shows an excellent accordance, in terms of age-percentage repartition of infected,104

between the public available data and the output of our calibrated model.105

(a) β at week 0. (b) β at week 9.

(c) β at week 19. (d) Recovery time.

Figure ST4: Posterior distribution of three different transmission rates at the first
(a), 9th (b) and 19th (c) week from the beginning of the simulation. (d) Posterior
distribution of the recovery time variable.

Week β median value

1 0.02866168

2 0.08487043

3 0.05793916

4 0.03441935

5 0.04757512

6 0.07276475

7 0.08298755

8 0.07913101

9 0.07514123

10 0.07197278

11 0.07040295

12 0.06946485

13 0.06860226

14 0.06789474

15 0.06733712

16 0.06685438

17 0.06643925

18 0.0661041

19 0.03511503

20 0.02103584

21 0.01821423

Table SF2: Median values re-
trieved by the posterior distribu-
tions during each week of the cal-
ibration interval.

106
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(a) Total deceased after the calibration stages compared with the DPC data function.

(b) Age-dependent evolution of deceased after the calibration stages compared with the DPC data [12] function.

(c) Age-percentage repartition of deceased after the calibration stages compared with the DPC data [12]

function.

Figure ST5: Deceased evolutions after the calibration.
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(a) Age-dependent evolution of detected infected after the calibration stages compared with the DPC data [12] function.

(b) Age-percentage repartition of deceased after the calibration stages compared with the DPC data [12]

function.

Figure ST6: Infected evolutions after the calibration.

S3. Sensitivity analyses107

In this section we show the results of a sensitivity analysis of the reproduction number Rt with respect to108

the vaccination parameters θV , θW , σV , σW . The reproduction number of the model, measuring the amount of109

secondary cases infected by a primal one in a fully susceptible population, has been recovered following the110

Next Generation Matrix approach [26], i.e. by computing the spectral radius of the so-called next generation111

matrix associated to the model. In the following, we consider two different scenarios:112

• Scenario 1 (Figure ST7): Consider the dependency of Rt on the effectiveness in reducing transmissi-113

bility, covering the space of admissible parameters σV , σW ∈ [0, 1].114

• Scenario 2 (Figure ST8): Consider the dependency of Rt on the effectiveness in reducing severe115

infections, covering the space of admissible parameters θV , θW ∈ [0, 1].116

It is well-known that the value of the reproduction number plays a key-role in the dynamics of the epidemic.117
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Indeed, it can be interpreted as a bifurcation parameter assessing whether an outbreak is starting or if the118

epidemic is slowing down (threshold value for Rt is 1). In all the simulations, the value of the transmission rate119

in each time phase is set equal to the median value obtained by the calibration process, while the recovery time120

has been chosen equal to the median value of the posterior distribution of the MCMC calibration, i.e. 14.20121

days. From Figures ST7(a) and ST8(a) we deduce that there is no evidence of the impact of the vaccination122

parameters on the initial Reproduction number (also known as R0). Moreover, from Figure ST8 we observe123

that variations of the severity reduction parameters θV , θW have very little impact (order 1e-9/1e-10) on the124

reproduction number at different weeks. This is not unexpected since these parameters enter in the model125

only through the fatality-function, thus impacting only the compartments R and D. More precisely, as the126

reproduction number takes into account the amount of new infections and the infections cannot come from D127

and R compartments (µR is a very slow rate), θV , θW are not relevant in the computation of Rt. On the other128

hand, the results reported in Figure ST7 show that the variations in the effectiveness of the vaccine (parameters129

σV and σW ) have relevant impact (order 1e-2) on reducing the transmissibility after the 8th week of simulation,130

as a result of the increase in the amount of administrations. Looking at the slopes of the isolines in Figure ST7131

we observe as the influence of σV becomes more prominent over the one of σW starting from week 10. Finally,132

a close inspection of the isolines in the neighbourhoods of the values retrieved by medical analyses (red dots133

in Figures ST7 and ST8) reveals that fixing deterministically the values of the vaccination parameters, rather134

than dealing with its uncertainty, does not have a significant influence on the reproduction number.135

8



(a) Week 0. (b) Week 4.

(c) Week 8. (d) Week 12.

(e) Week 16. (f) Week 20.

Figure ST7: Reproduction number at different weeks depending on the value assigned to the effectivenesses of doses on transmis-
sibility. X-axis represents σV and Y-axis represents σW . The red point corresponds to the reference value, i.e. Rt value with
σV , σW as in Table SF1.
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(a) Week 0. (b) Week 4. Reference Rt = 0.54480551917.

(c) Week 8. Reference Rt = 1.20322965963. (d) Week 12. Reference Rt = 0.97225228190.

(e) Week 16. Reference Rt = 0.85123543297. (f) Week 20. Reference Rt = 0.23986708323.

Figure ST8: Reproduction number at different weeks depending on the value assigned to the effectivenesses of doses on severity.
X-axis represents θV and Y-axis represents θW . The red point corresponds to the reference value, i.e. Rt value with θV , θW as
in Table SF1. Remark : In Figures (b)-(f) the colorbar value stands for the increment or decrement with respect to the reference
value.
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S4. Validation results for the Inexact adjoint system136

In this section we introduce some numerical tests corroborating the use of the inexact adjoint problem in the

projected gradient algorithm described in section 2.3. We carried out some numerical experiments solving

optimal control problems solving both the exact and inexact versions of the adjoint system for retrieving the

multipliers associated to the descending gradient direction. We optimize the amount of doses to be distributed

among the following three age classes:

NA = {(0÷ 19), (20÷ 39), (80+)}.

Those age-classes are the ones that experience the greatest variations in terms of the number of vaccine admin-137

istrations between the initial policy and the optimized policy for each cost functional (cfr. Section Results).138

We solve the optimal control problems minimizing all cost functionals where the adjoint has been solved both139

inexactly (blue policy) and exactly (green policy). We highlight that the delayed terms in the evolution equa-140

tions of the Hamiltonian (whose order of magnitude is approximately 10 order of magnitude lower than the141

other terms) are negligible:142

min
t∈[0;Tf−ta]

∣∣∣∣∂HX

∂Si
(t)

∣∣∣∣ ≈ 10−3, max
t∈[ta;Tf ]

∣∣∣∣∂HX

∂Zi
(t)

∣∣∣∣ ≈ 10−14, ∀i ∈ NA,

min
t∈[0;Tf−ta]

∣∣∣∣∂HX

∂Vi
(t)

∣∣∣∣ ≈ 10−2, max
t∈[ta;Tf ]

∣∣∣∣∂HX

∂Oi
(t)

∣∣∣∣ ≈ 10−14, ∀i ∈ NA,

min
t∈[0;Tf−ta]

∣∣∣∣∂HX

∂Wi
(t)

∣∣∣∣ ≈ 10−4, max
t∈[ta;Tf ]

∣∣∣∣∂HX

∂Pi
(t)

∣∣∣∣ ≈ 10−14, ∀i ∈ NA.

(3)

Therefore, the optimal policies, obtained employing the two different adjoint systems at each iteration step,143

coincide (see Figures ST9–ST11). Actually, in each case we measured that144

max
i∈NA

||p̃i − pi||2,t ≤ 10−10, (4)

adopting for p̃i and pi the same notation of Section 2.3.145
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Figure ST9: Weekly amount of doses delivered for each age-stratification in the solutions minimizing infected
starting from the Italian DPC policy and considering the three the exact and the inexact version of the adjoint
system.

Figure ST10: Weekly amount of doses delivered for each age-stratification in the solutions minimizing deceased
starting from the Italian DPC policy and considering the three the exact and the inexact version of the adjoint
system.
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Figure ST11: Weekly amount of doses delivered for each age-stratification in the solutions minimizing hospitalized
starting from the Italian DPC policy and considering the three the exact and the inexact version of the adjoint
system.
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